Chapter 15 Other Distributions

Figure 15.1: A French Statypus Working on Geometric Statistics
Although platypuses do have webbed feet, they can retract the webbing between their toes to allow them to run, climb rocks, and even dig burrows.166
FILL INTRODUCTION
This chapter has not been finished. Contact the author with any questions!
New R Functions Used
All functions listed below have a help file built into RStudio. Most of these functions have options which are not fully covered or not mentioned in this chapter. To access more information about other functionality and uses for these functions, use the ?
command. E.g. To see the help file for qnorm
, you can run ?dgeom
or ?dgeom()
in either an R Script or in your Console.
dgeom()
: Density function for the geometric distribution.pgeom()
: Distribution function for the geometric distribution.qgeom()
: Quantile function for the geometric distribution.rgeom()
: Random number generation for the geometric distribution.ppois()
: Distribution function for the Poisson distribution.qpois()
: Quantile function for the Poisson distribution.rpois()
: Random number generation for the Poisson distribution.
15.1 The Geometric Distribution
15.1.1 dgeom
The syntax of dgeom()
is
dgeom(x, prob) #This code will not run unless the necessary values are inputted.
where the parameters are:
x
: Quantity to be evaluated forprob
: Probability of success on each trial.
15.1.2 pgeom
The syntax of pgeom()
is
pgeom( q, prob, lower.tail ) #This code will not run unless the necessary values are inputted.
where the parameters are:
q
: Quantile to be evaluated forprob
: Probability of success on each trial.lower.tail
: IfTRUE
(default), probabilities are \(P(X \leq q)\), otherwise, \(P(X > q)\).
15.1.3 qgeom
The syntax of qgeom()
is
qgeom( p, prob, lower.tail ) #This code will not run unless the necessary values are inputted.
where the parameters are:
x
: Quantity to be evaluated forprob
: Probability of success on each trial.lower.tail
: IfTRUE
, the result isq
such that \({\text{p} = P(X \leq \text{q} )}\) and ifFALSE
, the result isq
such that \({\text{p} = P(X > \text{q})}\).lower.tail
is set toTRUE
by default.
15.1.4 Random Geometric Quantities
The syntax of rgeom()
is
rgeom(n, prob) #This code will not run unless the necessary values are inputted.
where the parameters are:
n
: Number of observations.prob
: Probability of success on each trial.
Example 15.1 Three way tool finally right
<- rgeom(100,1/3)
Socks head(Socks)
## [1] 0 0 2 3 3 1
table(Socks)
## Socks
## 0 1 2 3 4 5 6 8 9 10 11 18
## 31 23 17 9 4 5 4 2 1 1 2 1
Example 15.2 Number of heads before first tails
set.seed(03271985)
<- rgeom(100,1/2)
FirstT table(FirstT)
## FirstT
## 0 1 2 3 4 5 6 13
## 47 24 13 8 4 2 1 1
Example 15.3 First time rolling a 7167
rgeom(100,1/6)
## [1] 1 0 4 2 3 4 2 11 2 14 23 4 5 2 12 4 6 4 1 3 1 3 0 0 12 9 4 0 1 7 1 11
## [33] 1 5 3 0 2 1 2 0 1 1 12 5 1 6 6 3 17 4 0 0 0 7 9 15 2 4 4 3 3 1 2 2
## [65] 0 6 1 2 2 8 16 5 1 4 2 0 8 9 3 0 10 20 1 1 8 1 2 3 3 0 5 0 13 2 0 1
## [97] 2 6 3 7
15.2 Poisson Distribution
15.2.1 dpois
The syntax of dpois()
is
dgeom( x, lambda ) #This code will not run unless the necessary values are inputted.
where the parameters are:
x
: Quantity to be evaluated for.lambda
: Value of the mean, \(\lambda\), for the distribution.
15.2.2 ppois
The syntax of ppois()
is
pgeom( q, lamdba, lower.tail ) #This code will not run unless the necessary values are inputted.
where the parameters are:
q
: Quantile to be evaluated for.lambda
: Value of the mean, \(\lambda\), for the distribution.lower.tail
: IfTRUE
(default), probabilities are \(P(X \leq q)\), otherwise, \(P(X > q)\).
15.2.3 qpois
The syntax of qpois()
is
qpois( p, lambda, lower.tail ) #This code will not run unless the necessary values are inputted.
where the parameters are:
x
: Quantity to be evaluated forlambda
: Value of the mean, \(\lambda\), for the distribution.lower.tail
: IfTRUE
, the result isq
such that \({\text{p} = P(X \leq \text{q} )}\) and ifFALSE
, the result isq
such that \({\text{p} = P(X > \text{q})}\).lower.tail
is set toTRUE
by default.
Fauna of Australia. Vol. 1b. Australian Biological Resources Study (ABRS)↩︎
See https://casino.betmgm.com/en/blog/luckiest-craps-players-in-the-world/ for more information.↩︎